Volcanic eruption prediction: Magma chamber physics from gravity and deformation measurements

نویسندگان

  • Hazel Rymer
  • Glyn Williams-Jones
چکیده

One of the greatest remaining problems in modern volcanology is the process by which volcanic eruptions are triggered. It is generally accepted that eruptions are preceded by magma intrusion [Sigurdsson and Sparks, 1978]. The degree of interaction between previously ponded magma in a chamber and newly intruded magma determines the nature and rate of eruption and also the chemistry of erupted lavas and shallow dykes. Here, we investigate the physics of this interaction. Volcano monitoring at its most effective is a synergy between basic science and risk assessment, while hazard mitigation depends on reliable interpretation of eruption precursors. The simple and much used Mogi model relates ground deformation (∆h) to changes in magma chamber volume. Gravity changes (∆g) combined with ground deformation provide information on magma chamber mass changes. Our new models predict how the ∆g/∆h gradient will evolve as a volcano develops from a state of dormancy through unrest into a state of explosive activity. Thus by simultaneous measurement of deformation and gravity at a few key stations, magma chamber processes can be identified prior to the onset of conventional eruption precursors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting volcanic eruption precursors: a new method using gravity and deformation measurements

One of the fundamental questions in modern volcanology is the manner in which a volcanic eruption is triggered; the intrusion of fresh magma into a reservoir is thought to be a key component. The amount by which previously ponded reservoir magma interacts with a newly intruded magma will determine the nature and rate of eruption as well as the chemistry of erupted lavas and shallow dykes. The p...

متن کامل

Physics‐based models of ground deformation and extrusion rate at effusively erupting volcanoes

[1] We present a model of effusive silicic volcanic eruptions which relates magma chamber and conduit physics to time‐dependent data sets, including ground deformation and extrusion rate. The model involves a deflating chamber which supplies Newtonian magma through a cylindrical conduit. Solidification is approximated as occurring at fixed depth, producing a solid plug that slips along its marg...

متن کامل

Methods of Volcano Monitoring To Predict Likelihood of Eruption in Long Valley Caldera

Volcano monitoring uses knowledge of volcanic processes and extensive data gathering to analyze areas of volcanic activity. The main goal is to learn the nature of the volcano, the magmatic processes occurring, and the likelihood of a future eruption. Volcano monitoring centers around three aspects of volcanic processes: ground deformation, seismic activity, and gas emissions. These techniques ...

متن کامل

Forecasting volcanic eruptions

Forecasting is a central goal of volcanology. Intensive monitoring of recent eruptions has generated integrated timeseries of data, which have resulted in several successful examples of warnings being issued on impending eruptions. Ability to forecast is being advanced by new technology, such as broad-band seismology, satellite observations of ground deformation and improved field spectrometers...

متن کامل

Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan

Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005